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Abstract. The gauge equivalence of the analogues of the nonlinear Schrödinger equation NLS−
and those of the Schrödinger flow of maps intoH 2 (the Minkowski HF model) in 2 + 1 dimensions
are proved, respectively. Combining these with the already-known results, we obtain a complete
understanding of the gauge equivalence of the analogous models of the nonlinear Schrödinger
equation (forκ = 1 or −1) and those of the Heisenberg ferromagnet model (for Euclidean or
Minkowski) in 2 + 1 dimensions.

1. Introduction

The nonlinear Schrödinger equation (NLS)

iψt +ψxx + 2κ|ψ |2ψ = 0 (1)

where the subscripts denote partial derivatives andκ is a constant, arises in physics from varied
backgrounds, such as in plasma physics and nonlinear optics, and provides a fairly universal
model of a nonlinear equation. Without loss of generality, we will denote by NLS+ and NLS−

the nonlinear Schrödinger equation (1) withκ = 1 andκ = −1, respectively. It is well known
(see [1,2]) that there is a gauge equivalence between the NLS+ and the Heisenberg ferromagnet
model (the HF model):ut = u× uxx , whereu = (u1, u2, u3) is the coordinates of a point on
the unit sphere inR3, which is an important equation in condensed-matter physics. Although
the dynamical properties of the NLS+ and NLS− are very different (for example, the NLS+

has light soliton solutions and the NLS− has no light soliton solutions, but rather has dark
soliton solutions), we have known that there is a complete unified geometric interpretation of
the NLS (1) forκ = 1, 0,−1 from the recent work in [3]. That is: they are exactly gauge
equivalent to the Schrödinger flow of maps fromR1 into the Euclidean 2-spaceS2 (with Gauss
curvature 1) [2], the complex planeC (with Gauss curvature 0) and the hyperbolic 2-spaceH 2

(with Gauss curvature−1) [3], respectively. Because the continuous Heisenberg ferromagnet
equation (the HF model) is simply the Schrödinger flow of maps fromR1 into the Euclidean
2-sphereS2 and the hyperbolic 2-spaceH 2 used in [3] is a similar unit sphere in Minkowski
3-spaceR2+1 (see [3] for details), we regard the Schrödinger flow of maps fromR1 into
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the hyperbolic 2-spaceH 2 as the Minkowski continuous Heisenberg ferromagnet model (the
M-HF model) in this paper.

Much effort has been devoted to the study of(2 + 1)-dimensional integrable systems
[4–6, 9, 10, 13–15]. Here we have the following interesting phenomenon: for a(1 + 1)-
dimensional integrable soliton equation, there exist usually two different ways in obtaining its
(2 + 1)-dimensional integrable generalizations. One standard way in constructing the(2 + 1)-
dimensional models is to start with the linear problem for a(1 + 1)-dimensional model, and
then replace the spectral parameter by a differential operator. For the NLS this process yields
the Davey–Stewartson equation (DSII ) and it takes the following form:

iqt − qxx + qyy + 2φq = 0 (2)

φxx + φyy + κ(qq)xx − κ(qq)yy = 0 (3)

whereq = q(t, x, y), etc, and the bar denotes the complex conjugate. We denote by DS+
II and

DS−II the DSII with κ = 1 andκ = −1, repectively. Another method for obtaining a(2 + 1)-
dimensional integrable model from a(1 + 1)-dimensional one, as done by Fordyet al [7,8], is
Lie algebraic. For the NLS the latter process leads to the so-called(2 + 1)-dimensional NLS
as follows:

iψt +ψxy + 2κψ∂−1
x ∂y |ψ |2 = 0 (4)

and we similarly denote by(2 + 1) NLS+ and(2 + 1) NLS− the(2 + 1)-dimensional nonlinear
Schr̈odinger equation (4) withκ = 1 andκ = −1, respectively.

The gauge equivalent structure of the(1+1)NLS is now very well understood (see [2,3]).
However, generally speaking, in(2 + 1)-dimensional integrable systems we have a number
of remarkable properties, which may not exist in their(1 + 1)-dimensional countparts (for
example, see [10] for some comments). So an interesting question that naturally arises is
whether the analogues of the NLS in 2+1 dimensions with such an important gauge equivalent
structure exist. In 1990, Chenget alproved [9] that the DS+II is gauge equivalent to the following
Ishimori equation [6] which is obtained in the same way as the DSII is from the HF model:

St + S × (Sxx − Syy) + φxSy + φySx = 0 (5)

φxx + φyy − 2S(Sx × Sy) = 0 (6)

whereS = (s1(t, x, y), s2(t, x, y), s3(t, x, y)) ∈ R3 with |S|2 = 1. In 1998, Myrzakulov
et al demonstrated in [10, 15] that the(2 + 1) NLS+ is gauge equivalent to the following HF
model in 2 + 1 dimensions obtained in the same way as the(2 + 1) NLS+:

St = (S × Sy + uS)x (7)

ux = −S · (Sx × Sy) (8)

whereS = (s1, s2, s3) ∈ R3 with |S|2 = 1 and× denotes the cross product.
The purpose of this paper is to show that the analogues of the NLS− in 2 + 1 dimensions

are respectively gauge equivalent to the analogues of the M-HF model in 2 + 1 dimensions.
Namely, we prove firstly that the(2 + 1) NLS− is gauge equivalent to the following(2 + 1)
M-HF model obtained in a similar way as (7), (8) from the system (i.e. [3, equation (5)]) of
the Schr̈odinger flow of maps intoH 2 ↪→ R2+1 (the M-HF model):

St = (S×̇Sy + 2iuS)x (9)

ux = − 1

2i
S · (Sx×̇Sy) (10)
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whereS = (s1(t, x, y), s2(t, x, y), s3(t, x, y)) ∈ R2+1 with |S|2 = s2
1 + s2

2 − s2
3 = −1 and

s3 > 0, and×̇ denotes the pseudo-cross product, i.e. for two vectorsa, b ∈ R2+1

a×̇b = (a2b3− a3b2, a3b1− a1b3,−(a1b2 − a2b1)).

Secondly, we show that the DS−II is also gauge equivalent to the following(2 + 1)-dimensional
integrable system obtained in a similar way to (5), (6) from the M-HF model, which we call
the Minkowski Ishimori equation (Minkowski IE):

St + S×̇(Sxx − Syy) + φxSy + φySx = 0 (11)

φxx + φyy + 2S(Sx×̇Sy) = 0 (12)

whereS = (s1(t, x, y), s2(t, x, y), s3(t, x, y)) ∈ R2+1 with |S|2 = −1 ands3 > 0. These
are dual interpretations of the gauge equivalence between the analogous models of the NLS+

eqaution and those of the HF model in 2 + 1 dimensions. An effective method applied here
is a different choice of Lax pair for the M-HF model and the Minkowski Ishimori equation
according to the dynamical behavior of auxiliary linear problem of the(2 + 1) NLS− and
the DS−II . And we use it to relate the M-HF model or the Minkowski Ishimori equation to
the(2 + 1) NLS− or the DS−II in a natural way by gauge transformation. Our arguments will
depend completely on the dynamical properties of the(2 + 1) NLS− or DS−II .

2. Gauge equivalence between the (2 + 1) NLS− and the M-HF model

In this section, we show that the(2+1)NLS− is gauge equivalent to the M-HF model. Because
the NLS− has no light-soliton solutions and neither does the(2+1)NLS−, we putφ = ψe−iρ2t ,
whereρ is a positive real constant, and get an equivalent equation forφ:

iφt + φxx − 2(∂−1
x ∂y |φ|2 − ρ2)φ = 0. (13)

As pointed out in [1], in order to solve (13) we need to add the following finite density boundary
condition at infinity:

φ→ ρ as x → +∞
φ→ ρei2β as x →−∞ (14)

whereβ is a real constant. According to the process of Fordyet al (see [7, 8]), and using the
Lax pair (12) for the(1 + 1) NLS− given in [3], we can easily see that (13) (with the boundary
condition (14)) permits the following Lax pair:

F ′x(t, x, y, λ) = (λσ3 +U)F ′(t, x, y, λ)

F ′t (t, x, y, λ) = −2iλF ′y(t, x, y, λ) + i{∂−1
x ∂yU

2 − ρ2 +Uy}σ3F
′(t, x, y, λ)

(15)

where

U =
(

0 φ(t, x, y)

φ(t, x, y) 0

)
σ3 =

(
1 0

0 −1

)
.

It is obvious that the Lax pair (15) has different dynamical behaviour for the spectral parameter
λ in the range of|λ| > ρ or |λ| < ρ. This causes some technical difficulties in characterizing
the dynamical properties of(2 + 1) NLS−. However, it is this dynamical properties of the
(2 + 1) NLS− that allows us to construct a gauge transformation to the(2 + 1) M-HF model.

For the(2 + 1)M-HF model (9), (10), we convert it into the matrix form. As done in [3],
let us put

p1 =
(

1 0

0 −1

)
p2 =

(
0 −1

1 0

)
p3 =

(
0 1

1 0

)
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and set

S̃ = s1p1 + s2ip2 + s3ip3 (16)

for S(t, x, y) ∈ H 2. Obviously, S̃2 = −I , tr S̃ = 0, the diagonal of̃S is a real matrix
and the off-diagonal of̃S is a purely imaginary matrix. Using the commutative relations:
[p1, p2] = −2p3, [p1, p3] = −2p2 and [p2, p3] = −2p1, we obtain, by a direct computation,
the result that (9), (10) can be rewritten as

S̃t =
(

1

2

[
S̃, S̃y

]
+ 2iuS̃

)
x

ux = − 1

4i
tr(S̃S̃x S̃y). (17)

Similarly, we get the result that (17) permits a Lax pair as follows:

F̃x(t, x, y, λ) = iλS̃F̃ (t, x, y, λ)

F̃t (t, x, y, λ) = −2iλF̃y(t, x, y, λ) + iλ[S̃S̃y + 2iuS̃]F̃ (t, x, y, λ)
(18)

by using the Lax pair (9) of the(1 + 1)-dimensional M-HF model in [3], whereλ is a spectral
parameter.

Firstly, suppose thatφ(t, x, y) be a solution to the(2 + 1) NLS− (13) with the boundary
condition (14). The corresponding solution to the Lax pair (15) is denoted byF ′(t, x, y, λ).
Consider the following gauge transformation:

F ′(t, x, y, λ) = G(t, x, y)F (t, x, y, λ) (19)

whereG(t, x, y) will be determined later. We hope that the aboveF(t, x, y, λ) is a solution
to Lax pair (18) of (12). In order to do this, we put∂xF = LF and apply the first equation of
the Lax pair (15): then we have

λσ3 +U = G(t, x, y)L(t, x, y, λ)G−1(t, x, y) +Gx(t, x, y)G(t, x, y) (20)

from (19). SubstitutingL(t, x, y, λ) = iλS̃(t, x, y) into (20) and comparing the coefficients
of λj (for j = 1, 0) in equation (20), we obtain

σ3 = G(t, x, y)iS̃G−1(t, x, y) i.e. S̃ = −G−1(t, x, y)iσ3G(t, x, y) (21)

and

U(t, x, y) = Gx(t, x, y)G
−1(t, x, y) i.e. ∂xG(t, x, y) = U(t, x, y)G(t, x, y). (22)

As remarked in [3], equation (22) implies thatG(t, x, y) satisfies the first Lax equation of (15)
for λ = 0. One may check directly that solutions to such an equation are of the form:

G(t, x, y) =
(
f (t, x, y) g(t, x, y)

f (t, x, y) −g(t, x, y)
)

(23)

and hence, in this way, thẽS being defined by (21) coincides with the restrictions onS̃ in (16).
Using the second Lax equation forF ′, we have

∂tF (t, x, y, λ) = −2iλFy(t, x, y, λ) +M(t, x, y, λ)F (t, x, y, λ)

with

i{∂−1
x ∂yU

2 − ρ2 +Uy}σ3 = GtG + 2iλGyG
−1 +GMG−1. (24)

We now show that the aboveM exactly equals iλ[S̃S̃y + 2iuS̃], i.e. F(t, x, y, λ) satisfies
the second Lax equation in (18) with the choice ofG(t, x, y) = F ′(t, x, y,0). In fact, on
substitutingM = iλ[S̃S̃y + 2iuS̃] into (24), the constant term leads to

i{∂−1
x ∂yU

2 +Ux}σ3 = GtG
−1 or ∂tG = i{∂−1

x ∂yU
2 − ρ2 +Ux}σ3G (25)
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which is satisfied by the chosenG(t, x, y). So what remains for us to show is that the coefficient
of λ, i2GyG

−1 + iG[S̃S̃y + 2iuS̃]G−1, on the right-hand side of (24) vanishes, i.e.

S̃S̃y + 2iuS̃ = −2G−1Gy. (26)

Indeed, from the first Lax equations ofG we have

Gy = VG (27)

for some matrixV satisfying the integrablity equationUy − Vx + [U,V ] = 0. It can be
straightfowardly verified that the general form ofV is

V =
(

iα β

β −iα

)
for some real functionα and complex functionβ. Now let us setu = −iα, then

S̃S̃y + 2iuS̃ = −G−1iσ3GyG
−1iσ3G−G−1Gy − 2iuG−1iσ3G

= G−1σ3V σ3G−G−1VG + 2uG−1σ3G

= −2G−1VG = −2G−1Gy

where we have used the facts thatσ3V
(diag) = V (diag)σ3 andσ3V

(off-diag) = −V (off-diag)σ3.
Thus we arrive at the desired identity (26). This proves that the matrixS̃ and the functionu
constructed from a solutionφ(t, x, y) to the(2 + 1) NLS− satisfy the system of the(2 + 1)-
dimensional M-HF model (17).

Next we shall prove that the above transformation from the(2 + 1) NLS− to the(2 + 1)
M-HF model (17) is in fact reversible. Suppose a matrixS̃ of the form (16) and a functionu
satisfy equation (17). As shown in [3], we may choose a matrixG(t, x, y) with the following
form:

G(t, x, y) =
(
f (t, x, y) g(t, x, y)

f (t, x, y) −g(t, x, y)
)

such that detG = 1, σ3 = GiS̃G−1 and

Gx(t, x, y)G(t, x, y)
−1 =

(
0 φ(t, x, y)

φ(t, x, y) 0

)
= U(t, x, y) (28)

for some complex functionφ(t, x, y).
Because of (28), we have

Gy = VG
with

V =
(

iα β

β −iα

)
satisfying the integrablity equationUy − Vx + [U,V ] = 0, whereα is a real function andβ a
complex function. It is a direct calculation that the second equation of (17) may be re-expressed
as follows:

ux = 1

4i
tr
(
S̃S̃x S̃y

) = −βφ + βφ.

Notice that−iα also satisfies the above equation, i.e.−iαx = −βφ + βφ, from the diagonal
part of the equationUy −Vx + [U,V ] = 0. Hence we obtainu = −iα + ic for some functionc
which will be determined later. From this we obtain

S̃S̃y + 2iuS̃ = −2G−1Gy + 2icG−1σ3G (29)
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in a similarly way as for (26). Now, put

LG(λ) = GxG
−1 +GL̃(λ)G−1 = λσ3 +U (30)

MG(λ) = GtG
−1 + 2iλGyG

−1 +GM̃(λ)G−1 = GtG
−1 + λ2icG−1G (31)

whereL̃(λ) = iλS̃, M̃(λ) = iλ[S̃S̃y + 2iuS̃] are the coefficient matrices in (18) and, in the
second identity of (31), we have used the identity (29) . SinceL̃ andM̃ satisfy the integrability
condition of (18), we have

∂LG

∂t
− ∂M

G

∂x
+ [LG,MG] + 2iλLGy = 0. (32)

The vanishing of the coefficient ofλ2 in (32) impliesc ≡ 0 and the vanishing of the coefficient
of λ and the diagonal part of the constant term in (32) lead to

GtG
−1 = i{∂−1

x ∂yU
2 +Uy}σ3 + iτ(t)σ3 (33)

for some real-valued functionτ(t). Now notice that the above restrictions onG allows an
arbitrariness inG of the formG → eiγ (t)σ3G for a real-valued functionγ (t). If we require
thatγ (t) satisfies

∂γ

∂t
(t) = τ(t)− ρ2

thenG can be modified so that for the newG the second term on the right-hand side of
(33) is−ρ2σ3. It implies thatMG(λ) is exactly the i{∂−1

x ∂yU
2 − ρ2 + Uy}σ3 and henceφ

satisfies the(2 + 1) NLS−. This completes the proof of the gauge equivalence between the
(2 + 1)-dimensional NLS− and the(2 + 1)-dimensional M-HF model.

3. Gauge equivalence between the DS−II and the Minkowski IE

For the NLS−, the different way from the above section in yielding(2 + 1)-dimensional
integrable model is to replace the spectral parameter by a differential operator, such as∂y .
In this process, one obtains the DS−II (5), (6) with κ = −1. The DS−II permits a Lax pair as
follows:

P1 = i∂y − σ3∂x +Q (34)

P2 = ∂t + 2iσ3∂
2
x − 2iU∂x +C (35)

with

Q =
(

0 q

−q 0

)
C =

(
ia −iqx + qy

iqx + qy ib

)
b = −a (36)

and

−(b + a)y + i(b − a)x = 2i(qq)x (37)

−(b − a)y + i(b + a)x = 2(qq)y. (38)

Now for the system of the Schrödinger flow of maps into the hyperbolic 2-spaceH 2

(i.e. [3, equation (5)]) or in other words, the M-HF model, to our surprise we must use the
rejected form of Lax pair (7) displayed in [3] to obtain the following(2 + 1)-dimensional
integrable equation (which we call the Minkowski IE) in the same way as the DS:

St + S×̇(Sxx − Syy) + φxSy + φySx = 0 (39)

φxx + φyy + 2S(Sx×̇Sy) = 0 (40)
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whereS = (s1(t, x, y), s2(t, x, y), s3(t, x, y)) ∈ R2+1 with |S|2 = −1 ands3 > 0. The Lax
pair of (39), (40) is

L1 = i∂y + S∂x (41)

L2 = ∂t − 2iS∂2
x − (iSx − SyS − iφS − φy)∂x (42)

with

S =
(
s3 −s
s −s3

)
s = s1 + is2.

Therefore, equations (39), (40) and the DS−II can be represented as [L1, L2] = 0 and
[P1, P2] = 0, respectively.

In this section, we show that the Minkowski IE (39), (40) is gauge equivalent to the DS−
II .

If we can find a gauge transformationT such that

P1 = T L1T
−1 P2 = T L2T

−1 (43)

then one obtains [P1, P2] = T [L1, L2]T −1, which indicates the gauge equivalence from
(39), (40) to DS−II . By comparing the coefficients of∂jx on both sides of (43), one finds
that such a matrixT must satisfy

−σ3 = T ST −1 (44)

Q = −iTyT
−1 + σ3TxT

−1 (45)

2iQ = 4iσ3TxT
−1 + T (iSx − SyS − iφxS − φy)T −1 (46)

C = −TtT −1− 2iσ3TxxT
−1 + 2iQTxT

−1. (47)

Firstly, suppose that the pair(S, φ) is a solution to (39), (40) andL1, L2 its corresponding
Lax pair, we construct such a gauge transformationT . By solving (44), we see that the general
form of T is

T = diag(λ, λ)(S − σ3) (48)

whereλ is temporally arbitrary. Substituting (48) into (45), by requiring that the right-hand
side of (45) be off-diagonal, then the constraint forλ reads

λx

λ
− s3x

2
+

ssx

2(s3− 1)
− i

(
λy

λ
− s3y

2
+

ssy

2(s3− 1)

)
= 0 (49)

andq is then given exactly in term ofS andλ in the following way:

q = λ

λ

[(
ss3x

2(s3− 1)
− sx

2

)
− i

(
ss3x

2(s3− 1)
− sx

2

)]
(50)

and, by using the identitys1xs2y − s2xs1y = s3S · (Sx×̇Sy), we obtain

qq = 1
4

[|Sx |2 + |Sy |2 + 2S · (Sx×̇Sy)
]
. (51)

SubstitutingT andq, given by (50), into (46) which give rise to an additional constraint onλ:

4i

(
λx

λ
− s3x

2
+

ssx

2(s3− 1)

)
+ iφx − φy = 0. (52)

Notice that equations (49) and (52) give rise to

4

(
λy

λ
− s3y

2
+

ssy

2(s3− 1)

)
− iφx + φy = 0. (53)
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It is a direct calculation to verify that equation (12) (or equation (40)) plays the role of
the compatibility condition for (52) and (53); in the calculation we have to use the identity
s1xs2y − s2xs1y = s3S · (Sx×̇Sy).

For equation (47) we would like to verify that it is also satisfied through a direct proof,
but not a lengthy calculation as done in [9]. Let us choose aSU(1, 1)-valued matrix solution
T̃ to

P1T̃ = 0 P2T̃ = 0 (54)

with q given in (50) and theC given in (36) and (37), (38) which depends obviously onq. If

we setS = −T̃ −1σ3T̃ and represent thẽT asT̃ = diag(λ̃, λ̃)(S − σ3), then from the equation
0= (P1T̃ )T̃

−1 = iT̃y T̃ −1−σ3T̃x T̃
−1+Q (i.e. equation (45)) we obtain the result that theλ̃ also

satisfies equation (49) if we insertλ̃ instead ofλ. Furthermore, substitutingS = −T̃ −1σ3T̃

into (46) and using (45), we find

i(σ3T̃x T̃
−1 + T̃x T̃

−1σ3)− T̃y T̃ −1− σ3T̃y T̃
−1σ3 + iφxσ3− φy = 0. (55)

Hence

φx = 1
2i tr(iT̃x T̃

−1 + iσ3T̃x T̃
−1σ3− σ3T̃y T̃

−1− T̃y T̃ −1σ3) (56)

φy = 1
2i tr(σ3T̃x T̃

−1 + T̃x T̃
−1σ3 + iT̃y T̃

−1 + iσ3T̃y T̃
−1σ3). (57)

One can easily check that the compatibility condition of (56) and (57) is automatically
satisfied (see [9, p L476]). Therefore, from (56) and (57) we have

φxx + φyy = − 1
2i tr

(
σ3[T̃x T̃

−1, T̃y T̃
−1] + [ T̃x T̃

−1, T̃y T̃
−1]σ3

)
(58)

or equivalently

φxx + φyy = −i tr
(
S[Sx, Sy ]

)
. (59)

Equation (59) is the same as (40) or (12), but in a different form. This shows that the aboveT̃

satisfies (46) or, in other words,λ̃ satisfies (49) and the additional constraint (52). Thusλ and
λ̃ satisfy the following equations which can be obtained directly from (49) and (52):

λx

λ
= λ̃x

λ̃
=
(

1

4
(−φx − iφy) +

s3x

2
− sxs

2s3− 2

)
(60)

λy

λ
= λ̃y

λ̃
=
(

1

4
(iφx − φy) +

s3y

2
− sys

2s3− 2

)
. (61)

Hence we obtainλ = p(t)λ̃ for some non-vanishing complex functionp. Furthermore,
by using S = −T −1σ3T = −T̃ −1σ3T̃ , we see thatp is in fact a real function, i.e.
T = diag(p(t), p(t))T̃ . From this relation and the equationP2T̃ = 0, we find that
the off-diagonal part of−TtT −1 − 2iσ3TxxT

−1 + 2iUTxT −1 is just the same part ofC
given by (36) withq given in (50) anda, b determined by (37), (38) and diagonal part of
−TtT −1− 2iσ3TxxT

−1 + 2iUTxT −1 is

diag

(
p′(t)
p(t)

,
p′(t)
p(t)

)
+C(diag)

and therefore it satisfies the same equations (37), (38). This shows thatT satisfies (47) and
hence thatq and its associateda, b constructed from the solution(S, φ) to (39), (40) satisfies
the DS−II .

Next we shall prove that the above transformation from (39), (40) to the DS−
II is in fact

reversible. Supposeq and its associateda, b are solutions to the DS−II . Let us choose the
SU(1, 1)-valued matrix solutionT to

P1T = 0 P2T = 0 (62)
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and define

S = −T −1σ3T (63)

i.e.T satisfies (44), (45) and (47) with the givenq. To determineφ such that (46) and (12) are
valid, we substitute (63) into (46). Then with the same arguments as above forT̃ , we get that
theφ given by (56) and (57) satisfies (58) or (59). Therefore, we have proved that the matrixT

satisfing (62) gives rise to the gauge transformation from DS−
II to (39), (40) or (11), (12).

4. Conclusion and remarks

In this paper, we have proved that the two analogous models of the NLS− in 2 + 1 dimensions
are gauge equivalent to those of the Schrödinger flow of maps into hyperbolic 2-spaceH 2

(i.e. the M-HF model) in 2 + 1 dimensions, respectively. These are generalized versions of
the result obtained from [3] in two different ways and demonstrate the deep relations between
those pairs of two(2 + 1)-dimensional integrable systems. Combining the present results with
those of [9] and [10], we have a complete understanding of the gauge equivalence of the two
analogous models of the NLS (1) forκ = 1 or−1 and those of the Euclidean or Minkowski
HF model in 2 + 1 dimensions. The results indicate that the equations of the analogues of the
NLS+ and NLS− in 2 + 1 dimensions can be explained geometrically as being of ‘elliptic type’
and ‘hyperbolic type’, respectively, since the targets of their corresponding Schödinger flow
in 1 + 1 dimensions are a Euclidean 2-sphere and a hyperbolic 2-space. In a physical sense,
we again see from the above results that the light-soliton solutions and dark-soliton solutions
of the NLS in 1 + 1 or 2 + 1 dimensions should have the character of localized and non-
localized solutions, respectively. We believe that these results are interesting and important
in the integrable theory of the NLS and the HF models both in 1 + 1 and 2 + 1 dimensions.
By the way, we also find the dynamical meanings of the modifying functionu in the system
of the (2 + 1)-dimensional M-HF model (17) (or also in the(2 + 1)-dimensional HF model)
explicitly. That is, if we letF be a solution to its Lax pair and setFy = VF for some matrixV ,
then diag(−u, u) is simply the diagonal part of the matrixV |λ=0. This gives an interesting
dynamical explanation foru.

However, many questions remain open and deserve further investigation in this respect.
Examples are: finding physical applications of the results obtained in this paper, whether one
can find a Schr̈odinger-like equation which is gauge equivalent to the generalized Landau–
Lifshitz equation [11] (or see [1,12]) and, in 2 + 1 dimensions, whether the DSI for κ = 1 or
−1 (see, for example [4]) exists with such a gauge equivalent structure.
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